随着推荐系统变得越来越复杂和复杂,它们通常会缺乏公平和透明度。为建议提供强大而公正的解释,人们越来越关注,因为它可以帮助解决这些问题并提高推荐系统的信任度和信息性。然而,尽管事实是为人类生成了这种解释,这些人类对具有适当情绪的信息做出更强烈反应,但在为建议解释时,人们缺乏对情绪的考虑。发现当前的解释生成模型可以夸大某些情绪,而无需准确捕获基本的语调或含义。在本文中,我们提出了一种基于多头变压器的新方法,称为“情感感知变压器”,以解释推荐(情感者),以产生更健壮,公平和情感增强的解释。为了衡量产生的解释的语言质量和情感公平性,我们采用自动文本指标和人类的看法进行评估。在具有多个评估指标的三个广泛使用基准数据集上进行的实验表明,情感者在文本质量,解释性和对情感分布的公平性方面始终优于现有的最新解释生成模型。 Emoter的实施将作为开源工具包发布,以支持进一步的研究。
translated by 谷歌翻译
培训广泛和深度神经网络(DNN)需要大量的存储资源,例如内存,因为在转发传播期间必须在存储器中保存中间激活数据,然后恢复以便向后传播。然而,由于硬件设计约束,诸如GPU之类的最先进的加速器(例如GPU)仅配备了非常有限的存储容量,这显着限制了在训练大规模DNN时的最大批量大小和性能加速。传统的记忆保存技术均受性能开销或受限互连带宽或特定互连技术的约束。在本文中,我们提出了一种新颖的记忆高效的CNN训练框架(称为Comet),利用错误界限的损耗压缩来显着降低训练的内存要求,以允许培训更大的模型或加速培训。不同于采用基于图像的有损压缩机(例如JPEG)的最先进的解决方案来压缩激活数据,我们的框架故意采用严格的错误控制机制来采用错误界限的损耗压缩。具体而言,我们对从改变的激活数据传播到梯度的压缩误差传播的理论分析,并经验探讨改变梯度对训练过程的影响。基于这些分析,我们优化了误报的损耗压缩,并提出了一种用于激活数据压缩的自适应误差控制方案。我们评估我们对最先进的解决方案的设计,其中包含五个广泛采用的CNN和Imagenet DataSet。实验表明,我们所提出的框架可以在基线训练中显着降低13.5倍,并分别在另一个最先进的基于压缩框架上的1.8倍,几乎没有准确性损失。
translated by 谷歌翻译
Increasing research interests focus on sequential recommender systems, aiming to model dynamic sequence representation precisely. However, the most commonly used loss function in state-of-the-art sequential recommendation models has essential limitations. To name a few, Bayesian Personalized Ranking (BPR) loss suffers the vanishing gradient problem from numerous negative sampling and predictionbiases; Binary Cross-Entropy (BCE) loss subjects to negative sampling numbers, thereby it is likely to ignore valuable negative examples and reduce the training efficiency; Cross-Entropy (CE) loss only focuses on the last timestamp of the training sequence, which causes low utilization of sequence information and results in inferior user sequence representation. To avoid these limitations, in this paper, we propose to calculate Cumulative Cross-Entropy (CCE) loss over the sequence. CCE is simple and direct, which enjoys the virtues of painless deployment, no negative sampling, and effective and efficient training. We conduct extensive experiments on five benchmark datasets to demonstrate the effectiveness and efficiency of CCE. The results show that employing CCE loss on three state-of-the-art models GRU4Rec, SASRec, and S3-Rec can reach 125.63%, 69.90%, and 33.24% average improvement of full ranking NDCG@5, respectively. Using CCE, the performance curve of the models on the test data increases rapidly with the wall clock time, and is superior to that of other loss functions in almost the whole process of model training.
translated by 谷歌翻译
In the scenario of black-box adversarial attack, the target model's parameters are unknown, and the attacker aims to find a successful adversarial perturbation based on query feedback under a query budget. Due to the limited feedback information, existing query-based black-box attack methods often require many queries for attacking each benign example. To reduce query cost, we propose to utilize the feedback information across historical attacks, dubbed example-level adversarial transferability. Specifically, by treating the attack on each benign example as one task, we develop a meta-learning framework by training a meta-generator to produce perturbations conditioned on benign examples. When attacking a new benign example, the meta generator can be quickly fine-tuned based on the feedback information of the new task as well as a few historical attacks to produce effective perturbations. Moreover, since the meta-train procedure consumes many queries to learn a generalizable generator, we utilize model-level adversarial transferability to train the meta-generator on a white-box surrogate model, then transfer it to help the attack against the target model. The proposed framework with the two types of adversarial transferability can be naturally combined with any off-the-shelf query-based attack methods to boost their performance, which is verified by extensive experiments.
translated by 谷歌翻译
Supervised Deep-Learning (DL)-based reconstruction algorithms have shown state-of-the-art results for highly-undersampled dynamic Magnetic Resonance Imaging (MRI) reconstruction. However, the requirement of excessive high-quality ground-truth data hinders their applications due to the generalization problem. Recently, Implicit Neural Representation (INR) has appeared as a powerful DL-based tool for solving the inverse problem by characterizing the attributes of a signal as a continuous function of corresponding coordinates in an unsupervised manner. In this work, we proposed an INR-based method to improve dynamic MRI reconstruction from highly undersampled k-space data, which only takes spatiotemporal coordinates as inputs. Specifically, the proposed INR represents the dynamic MRI images as an implicit function and encodes them into neural networks. The weights of the network are learned from sparsely-acquired (k, t)-space data itself only, without external training datasets or prior images. Benefiting from the strong implicit continuity regularization of INR together with explicit regularization for low-rankness and sparsity, our proposed method outperforms the compared scan-specific methods at various acceleration factors. E.g., experiments on retrospective cardiac cine datasets show an improvement of 5.5 ~ 7.1 dB in PSNR for extremely high accelerations (up to 41.6-fold). The high-quality and inner continuity of the images provided by INR has great potential to further improve the spatiotemporal resolution of dynamic MRI, without the need of any training data.
translated by 谷歌翻译
Recent studies have shown that using an external Language Model (LM) benefits the end-to-end Automatic Speech Recognition (ASR). However, predicting tokens that appear less frequently in the training set is still quite challenging. The long-tail prediction problems have been widely studied in many applications, but only been addressed by a few studies for ASR and LMs. In this paper, we propose a new memory augmented lookup dictionary based Transformer architecture for LM. The newly introduced lookup dictionary incorporates rich contextual information in training set, which is vital to correctly predict long-tail tokens. With intensive experiments on Chinese and English data sets, our proposed method is proved to outperform the baseline Transformer LM by a great margin on both word/character error rate and tail tokens error rate. This is achieved without impact on the decoding efficiency. Overall, we demonstrate the effectiveness of our proposed method in boosting the ASR decoding performance, especially for long-tail tokens.
translated by 谷歌翻译
The objective of this paper is to learn dense 3D shape correspondence for topology-varying generic objects in an unsupervised manner. Conventional implicit functions estimate the occupancy of a 3D point given a shape latent code. Instead, our novel implicit function produces a probabilistic embedding to represent each 3D point in a part embedding space. Assuming the corresponding points are similar in the embedding space, we implement dense correspondence through an inverse function mapping from the part embedding vector to a corresponded 3D point. Both functions are jointly learned with several effective and uncertainty-aware loss functions to realize our assumption, together with the encoder generating the shape latent code. During inference, if a user selects an arbitrary point on the source shape, our algorithm can automatically generate a confidence score indicating whether there is a correspondence on the target shape, as well as the corresponding semantic point if there is one. Such a mechanism inherently benefits man-made objects with different part constitutions. The effectiveness of our approach is demonstrated through unsupervised 3D semantic correspondence and shape segmentation.
translated by 谷歌翻译
Patients take care of what their teeth will be like after the orthodontics. Orthodontists usually describe the expectation movement based on the original smile images, which is unconvincing. The growth of deep-learning generative models change this situation. It can visualize the outcome of orthodontic treatment and help patients foresee their future teeth and facial appearance. While previous studies mainly focus on 2D or 3D virtual treatment outcome (VTO) at a profile level, the problem of simulating treatment outcome at a frontal facial image is poorly explored. In this paper, we build an efficient and accurate system for simulating virtual teeth alignment effects in a frontal facial image. Our system takes a frontal face image of a patient with visible malpositioned teeth and the patient's 3D scanned teeth model as input, and progressively generates the visual results of the patient's teeth given the specific orthodontics planning steps from the doctor (i.e., the specification of translations and rotations of individual tooth). We design a multi-modal encoder-decoder based generative model to synthesize identity-preserving frontal facial images with aligned teeth. In addition, the original image color information is used to optimize the orthodontic outcomes, making the results more natural. We conduct extensive qualitative and clinical experiments and also a pilot study to validate our method.
translated by 谷歌翻译
This paper studies the problem of designing compact binary architectures for vision multi-layer perceptrons (MLPs). We provide extensive analysis on the difficulty of binarizing vision MLPs and find that previous binarization methods perform poorly due to limited capacity of binary MLPs. In contrast with the traditional CNNs that utilizing convolutional operations with large kernel size, fully-connected (FC) layers in MLPs can be treated as convolutional layers with kernel size $1\times1$. Thus, the representation ability of the FC layers will be limited when being binarized, and places restrictions on the capability of spatial mixing and channel mixing on the intermediate features. To this end, we propose to improve the performance of binary MLP (BiMLP) model by enriching the representation ability of binary FC layers. We design a novel binary block that contains multiple branches to merge a series of outputs from the same stage, and also a universal shortcut connection that encourages the information flow from the previous stage. The downsampling layers are also carefully designed to reduce the computational complexity while maintaining the classification performance. Experimental results on benchmark dataset ImageNet-1k demonstrate the effectiveness of the proposed BiMLP models, which achieve state-of-the-art accuracy compared to prior binary CNNs. The MindSpore code is available at \url{https://gitee.com/mindspore/models/tree/master/research/cv/BiMLP}.
translated by 谷歌翻译
In this paper, we study the \underline{R}obust \underline{o}ptimization for \underline{se}quence \underline{Net}worked \underline{s}ubmodular maximization (RoseNets) problem. We interweave the robust optimization with the sequence networked submodular maximization. The elements are connected by a directed acyclic graph and the objective function is not submodular on the elements but on the edges in the graph. Under such networked submodular scenario, the impact of removing an element from a sequence depends both on its position in the sequence and in the network. This makes the existing robust algorithms inapplicable. In this paper, we take the first step to study the RoseNets problem. We design a robust greedy algorithm, which is robust against the removal of an arbitrary subset of the selected elements. The approximation ratio of the algorithm depends both on the number of the removed elements and the network topology. We further conduct experiments on real applications of recommendation and link prediction. The experimental results demonstrate the effectiveness of the proposed algorithm.
translated by 谷歌翻译